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Abstract
Loss of retinal ganglion cells (RGCs) occurs in retinal degenerative diseases, 

such as glaucoma, age-related macular degeneration, diabetic retinopathy, central 
retinal artery occlusion and ischemic central retinal vein thrombosis in adults 
and in retinopathy of prematurity in infants. A critical role of hypoxia, which 
underlies most of the above disorders, has been reported in causing RGC death. 
Disruption of blood-retinal barrier (BRB) occurs due to increased production 
of vascular endothelial growth factor and nitric oxide in response to hypoxia 
resulting in extravasation of serum derived substances and retinal edema and this 
may be one of important factors mediating RGC death. Activation of microglial 
cells in response to hypoxia and subsequent increased release of proinflammatory 
cytokines by them such as tumor-necrosis factor-α (TNF-α) and interleukin-1β 
(IL-1β) target the TNF-receptor 1 and IL-receptor 1 on RGCs. Excess release 
of glutamate in retinal tissue under hypoxia activates the ionotropic glutamate 
receptors causing excitotoxicity through increased influx of calcium into the 
RGCs. Increased production of TNF-α, IL-1β and enhanced intracellular 
calcium results in RGC death through activating several pathways such as caspase 
signaling, mitochondrial dysfunction and oxidative stress. In our investigations, 
melatonin, an antioxidant, was shown to reduce RGC death in the adult and 
neonatal hypoxic retina, through suppression of TNF-α, IL-1β and glutamate 
levels as well as oxidative stress. Moreover, the function and structure of BRB was 
well preserved in these animals along with reduction in retinal edema. In view of 
our observations, we suggest that melatonin could be considered as a therapeutic 
agent to reduce RGC death in various retinal pathologies, in addition to other 
potential drugs/molecules of therapeutic interest that could render protection 
to RGCs. However, future in-depth research on the effects of melatonin on 
the retina under hypoxic conditions needs to be undertaken to explore its full 
potential in preventing/ameliorating RGC death. 
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Factors Mediating RGC Death
Several factors induced or upregulated by hypoxia may be 

involved in causing RGC death. These factors include, among 
others, disruption of the blood-retinal barrier, activation of 
microglial cells and the accompanying enhanced release of 
inflammatory cytokines and excess release and accumulation 
of glutamate in the retinal tissues.

Hypoxia and the blood-retinal barrier
The BRB regulates the passage of molecules from blood 

into the retina [11, 12]. It consists of an inner BRB formed 
by the tight junctions (TJ) between capillary endothelial cells 
and an outer barrier formed by TJ between retinal pigment 
epithelial cells [12-16]. The TJ are made up of transmembrane 
proteins such as occludin, claudin-5 and cytoplasmic proteins 
such as zona occludens (ZO)-1 that are structurally and 
functionally important for maintaining the integrity of 
the BRB. The proper functioning of the inner BRB also 
requires the collective contribution of pericytes, Müller cells 
and astrocytes that are in close apposition to the capillary 
endothelial cells [16-19]. Moreover, disruption of the inner 
BRB results in vascular leakage resulting in the formation 
of edema [16, 20, 21] a well-recognized and early feature of 
human diabetic retinopathy [22, 23]. BRB disruption due 
to hypoxia has also been reported to cause RGC swelling 
[6], endothelial cell death [24-27] and leukocyte plugging 
of vessels [28, 29]. Associated with BRB disruption there is 
increased RGC death [30-32].

Hypoxic-ischemic insult to the adult retina, has been 
shown to affect the integrity of TJ by reducing the expression 
of ZO-1 and occludin. This alteration in the expression of TJ 
molecules was associated with increased BRB permeability 
and subsequent vasogenic edema [33]. Similar changes in 
the expression of TJ molecules were observed in the neonatal 
retina following a hypoxic injury [34]. Concomitant to the 
alterations in the expression of TJ molecules, the vascular 
permeability of the retinal vessels was enhanced, and was 
established by administering tracers such as horseradish 
peroxidase (HRP) intravenously or rhodamine isothiocynate 
(RhIC) intraperitoneally in hypoxic rats. An increased leakage 
of these tracers was observed through the blood vessels in the 
inner retina inundating the retinal tissues thereafter. These 
findings strongly imply that hypoxia results in BRB breakdown. 
In addition, the hyaloid vessels in the neonatal vitreous also 
showed increased permeability following hypoxic/ischemic 
injury [9]. 

Hypoxia induced disruption of inner BRB was further 
evident with the ultrastuctural analysis of both neonatal 
and adult hypoxic retina. In neonatal hypoxic retina, the 
basal lamina was disintegrated and the endothelial cells 
exhibited cytoplasmic vacuoles and swollen mitochondria. 
The capillaries were often surrounded by empty perivascular 
spaces suggesting the presence of edema [34]. The Müller 
cell and astrocyte processes surrounding the capillaries in the 
inner retina were found to be hypertrophic. Taken together 
all these structural changes indicate impairment in the 
integrity of BRB in hypoxic retina. Moreover, the expression 
of aquaporin 4, a water-transporting protein, was found 
to be increased in Müller cells and astrocytes indicating 
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Introduction
The retina is one of the most metabolically active tissues 

and its demand for oxygen is higher than many other tissues 
including the brain [1-3]. Proper function of the retina depends 
on a continuous supply of oxygen which diffuses into it from 
circulation. The inner retina is supplied by capillary plexuses 
formed by branches of the central artery while the outer layers 
of the retina are nourished by the choriocapillaries. Deficient 
oxygen supply to the retina results in tissue hypoxia which 
is a critical factor implicated in retinal ganglion cell (RGC) 
death resulting in loss of vision in many ocular conditions 
such as retinal artery occlusion, ischemic central retinal vein 
thrombosis, glaucoma, diabetes [4, 5] and experimental branch 
retinal vein occlusion [6]. It may also result from systemic 
factors such as cardiorespiratory diseases. Chronic obstructive 
disease that is common among smokers is a significant 
cause of systemic and retinal hypoxia. In conditions such as 
the diabetes, occlusion of retinal capillaries by leukocytes 
and increased levels of endothelial cell/leukocyte adhesion 
molecules [7] reduce the retinal blood flow [8] and result in 
tissue hypoxia. 

Normal development and maturation of many tissues 
including the retina are affected by either birth asphyxia (lack 
of oxygen in the blood stream), hypoxia (reduction in the 
available oxygen), ischemia (reduction in blood flow that could 
lead to hypoxia) or hypoxia-ischemia (decreased blood flow 
combined with a reduction in the supply of oxygen). Prenatal 
or fetal hypoxia can occur in association with many maternal 
causes such as diabetes, asthma, anemia, smoking and the 
use of alcohol or drugs. A reduction in utero-placental blood 
flow, premature onset of labour or prolonged labour may also 
compromise fetal oxygenation. Hypoxia may also result from 
respiratory distress syndrome in the premature new-born that 
may lead to development of retinopathy of prematurity. RGC 
death is known to occur following hypoxic injuries in the 
developing retina [9].

Several factors such as vascular endothelial growth 
factor (VEGF), nitric oxide (NO), inflammatory cytokines, 
glutamate and oxidative stress are up regulated or induced 
in response to hypoxia thus adversely affecting the structure 
and function of the retina. Additionally, vascular permeability 
is increased and the blood-retinal barrier (BRB) is disrupted 
resulting in leakage of fluid into the retinal tissue. In diabetes, 
this may result in the development of diabetic macular edema, 
a leading cause of visual loss in diabetes [10]. Although various 
cells in the retina can be adversely affected by hypoxia, this 
review focuses on the death of the RGCs in hypoxia. 
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impairment in water and ion homeostasis that could lead to 
retinal edema [21]. The increased BRB permeability has been 
documented to alter the biochemical composition of retinal 
interstitial fluid [35] rendering the retinal microenvironment 
unbefitting for retinal cells. This could also compromise the 
neuron-glial communication [36] that serves to maintain 
retinal homeostasis. Of note, in transient retinal ischemia, 
the pertubation in Müller cell K+ conductance could lead to 
retinal detachment [37] that could account for neuronal death 
in the retina. Although the molecular mechanisms underlying 
the BRB disruption and associated RGCs death has not 
been elucidated entirely, a few studies have highlighted the 
involvement of vasoactive substances such as VEGF and nitric 
oxide synthases (NOS) in these processes [29, 36, 38, 39]. 

The expression of hypoxia inducible factor-1α (HIF-1α), a 
master regulator of cellular and developmental O2 homeostasis 
that is induced by hypoxia, is known to induce the production 
of VEGF and nitric oxide synthase (NOS) in the neonatal and 
adult retina. In response to hypoxic injury, we have documented 
the increased production of VEGF and NO in the developing 
and adult retina [21, 9]. The increased expression of VEGF 
in the retinal vessels is reported to cause the disruption of 
BRB following hypoxia [40-42], and an inhibition of VEGF 
has been shown to preserve the integrity of BRB [21]. In 
response to hypoxic injury, in adult and developing retina, 
VEGF was predominantly expressed in the astrocytes and 
Müller cells [21, 9]. VEGF exerts its action by binding to 
two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 
(KDR/Flk-1). In neonatal hypoxic retina, the increased expression 
of Flt-1 and Flk-1 was localized on the vascular endothelium [43]. 
Activation of these receptors is known to cause disruption of TJ 
by decreasing the expression of occludin [44] and ZO-1 [45], and 
may be important in the pathogenesis of BRB dysfunction 
[44]. VEGF induced activation of Flk-1 is implicated in the 
increased vascular permeability/BRB breakdown, that occurs 
in diabetic retina [46]. Activation of Flt-1 has been shown 
to mediate pericyte loss in the retinal vasculature resulting in 
increased vascular leakage and retinal damage [47]. Moreover, 
VEGF is also known to induce fenestrations in endothelial 
cells [48-50] and degenerative changes in the basement 
membranes thus increasing the vascular permeability [51]. 
It enhances the adhesion of leucocytes to vascular wall by 
increasing intercellular cell adhesion molecule-1 (ICAM-1) 
and vascular cell adhesion molecule-expression [29, 52] on the 
endothelial cells resulting in capillary occlusion by adherent 
leukocytes, endothelial cell apoptosis and BRB breakdown 
[26, 29, 53]. Occlusion of blood vessels could further lead to 
increased production of angiogenic factors that could lead to 
neovascularisation and subsequent retinal detachment [38, 
54]. Parallel to the BRB breakdown, recruitment of leukocytes 
and death of RGCs is frequently documented following an 
ischemic insult to the retina [30-32]. The entry of circulating 
leukocytes into the retina following BRB dysfunction is 
considered to play a critical role in RGC death [36]. The 
infiltrating leukocytes may activate the resident microglia 
that could result in death of RGCs and exacerbation of injury. 
Neufeld et al. [39] have documented that the infiltrating 
leukocytes could trigger RGC death through production of 
nitric oxide (NO). We have also documented an increased 
incidence of apoptotic RGCs and increased NO in the retinas 

of hypoxic animals [34].

NO is also reported to be involved in the breakdown 
of the BRB [55, 56]. NO is primarily synthesized from 
L-arginine by the NOS enzymes and is known to mediate 
neuronal communication as well vasodilatation. NOS 
from neurons (nNOS) and endothelial cells (eNOS) are 
constitutively expressed enzymes, the activities of which 
are calcium dependent, while inducible NOS (iNOS) is 
calcium-independent and NO generated from this isoform 
is known to mediate immune functions. Vasodilatation after 
hypoxic–ischaemic episodes is known to be caused by eNOS 
[57] resulting in increased blood flow in neural tissues. 
Investigations in retinas affected with diabetic retinopathy 
have thrown light on the mechanisms through which NOS 
could mediate BRB disruption. It has been suggested that NO 
from eNOS is involved in mediating VEGF-induced vascular 
hyperpermeability and NO produced by iNOS has an additive 
effect [58]. Joussen et al. [29] demonstrated that the increased 
production of VEGF could induce eNOS expression in the 
retina which could result in increased NO. NO derived from 
iNOS and eNOS was further found to facilitate BRB disruption 
by increasing ICAM-1 expression in the retinal endothelial 
cells which could promote leukocyte adhesion [55, 29]. The 
potential of NO in mediating BRB breakdown was further 
evident with its ability to reduce the expression of TJ molecules 
such as ZO-1 and occludin [55]. NO is also known to interact 
with superoxides to form peroxynitrite which are highly toxic 
to all retinal cells including endothelial cells [55]. Our studies 
in the adult and neonatal retina following hypoxic injury have 
shown that eNOS expression in the retinal endothelial cells 
was significantly increased after hypoxic exposure [21, 9]. We 
also showed an induction of iNOS expression by hypoxia in the 
retinal blood vessels as well as in the RGCs. Concomitant to 
this, there was increased NO production in the hypoxic retina 
[9]. As discussed above the disruption of BRB could facilitate 
the infiltration of blood borne substances which could trigger 
microglial activation in the retina leading to excess production 
pro-inflammatory cytokines and excitatory amino acids [36] 
that could result in death of RGCs. Moreover, in vitro studies 
have shown that NO can disrupt TJ between retinal pigment 
epithelial cells [59]. However, in our studies in the adult and 
neonatal hypoxic animals, there was no evidence of disruption 
of the outer BRB.

 Although VEGF has detrimental effects, it has also 
been reported to be important for the survival of RGCs in 
diabetic retina [60]. In cultured RGCs, the activation of 
VEGFR2 by VEGF-A conferred neuroprotection against free 
radicals through activation of AKT pathway [61]. VEGF-A 
is also documented to protect retinal neurons during the 
adaptive response to acute ischemia [62]. VEGF mediated 
cytoprotection is documented to involve glutathione, an 
antioxidant [63]. Given the complex contribution of VEGF 
in retinal diseases and injuries, and in protecting RGCs, future 
studies are warranted to delineate the isotypes mediating BRB 
disruption and cytoprotection. This could favour a holistic 
approach to the treatment of retinal diseases by preserving the 
retinal neurons.
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Hypoxia and microglial activation
Microglial cells are the resident immune effector cells in the 

retina. Under normal circumstances, they are confined to the 
nerve fibre layer, ganglion cell layer, inner and outer plexiform 
and inner nuclear layers in the adult retina [64, 65]. However, 
under pathological conditions, they have been detected in 
the outer nuclear layer and in the subretinal space [66]. In 
the retina of newborns, microglial cells are found mostly in 
the nerve fibre and ganglion cell layers [67, 68]. Microglial 
cells have a phagocytic function during the early development 
of the retina where they remove cellular debris derived from 
spontaneous degenerating elements. They also act as sensors 
to detect any disturbances in the normal microenvironment. 
They have both neuroprotective and detrimental roles in the 
immature and mature retina. During development, microglia 
play an important role in scavenging cellular debris in the 
neural tissues [69, 70]. However, on activation in many 
pathological conditions they show increased production of 
noxious substances such as reactive oxygen species (ROS) and 
inflammatory cytokines [71].

Production of proinflammatory cytokines such as tumor 
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) is 
known to be stimulated by hypoxia-ischemia in the retina 
[67, 72]. It has been well documented that these cytokines 
are derived from microglial cells and participate in the 
breakdown of the BRB [73, 74] and in RGC death [67]. 
Activated microglia have been linked to diabetic and ischemic 
retinopathies in the adult [66, 75, 76] and their numbers have 
been shown to increase in such conditions [77]. Microglial 
cells in the developing retina were the main source of TNF-α 
and IL-1β, the expression levels of which were increased 
drastically in response to hypoxic exposures [67]. It is to be 
noted that RGCs were the target of these cytokines as they 
vigorously expressed TNF receptor 1 (TNF-R1) and IL 
receptor 1 (IL-1R1). TNF-α has been shown to mediate RGC 
death by binding with its receptor TNF-R1 in experimental 
elevation of intraocular pressure and in ocular conditions 
such as retinal ischemia, optic nerve crush and glaucoma [78-
80] RGC apoptosis occurs through this binding as a result 
of activation of caspase signaling pathways, mitochondrial 
dysfunction and oxidative damage [81]. 

Microglia derived IL-1β has been reported to augment 
brain damage in ischemic, traumatic or excitotoxic insults [82-
84] through depolarizing neurons. Our recent investigations 
have shown that increased release of IL-1β by retinal 
microglia and enhanced expression of IL-R1 on RGCs 
occurred concurrently in the retina of hypoxic neonatal rats. 
IL-1β can damage the RGCs by binding to its receptor IL-R1 
and initiating mechanisms such as excitotoxicity and increased 
iNOS production through IL-R1 signalling [80].

Retinal hypoxia-ischemia is also known to induce the 
expression of monocyte chemoattractant protein-1 (MCP-
1) that attracts microglia and macrophages to the hypoxic 
areas resulting in aggravation of the inflammatory response 
[67]. MCP-1 expression has been suggested to attract 
resident macrophages/microglia, vitreous macrophages, and/or 
circulating monocytes through the BRB in the ischemic retina 
[76]. We have shown that MCP-1 expression was enhanced in 

the microglial cells in the hypoxic neonatal retina and this may 
be involved in attracting macrophages and inducing migration 
of microglia to the vicinity of RGCs. Increased numbers of 
microglia were indeed observed in the ganglion cell layer in 
the retinas of adult rats subjected to hypoxia. In vitro studies 
have lent further support to the involvement of microglia 
in hypoxia-induced RGC death. A significant reduction 
in RGC apoptosis was observed when they were treated 
with conditioned medium derived from primary microglia 
after neutralization with TNF-α and IL-1β antibodies. This 
suggests that hypoxia initiates retinal inflammation by direct 
activation of microglia with subsequent damage to RGCs [67]. 
In addition to the microglia, the hyalocytes, hyaloid and the 
retinal vessels showed enhanced expression of TNF-α and IL-
1β in the developing retina. It has also been reported that the 
vascular walls are a source of TNF-α production in the retina 
of diabetic patients [85] thus amplifying the inflammatory 
response of the microglial cells. TNF-α and other cytokines 
have also been documented to play a role in the development of 
vasogenic edema by inducing TJ disruption [86] and resulting 
in damage to the RGCs. Increased vascular permeability 
causes increased leakage of fluid and other potentially harmful 
molecules into the retina that would otherwise be excluded by 
an intact inner BRB.

Hypoxia and glutamate
Glutamate is the major excitatory neurotransmitter in the 

retina and is released by photoreceptors, bipolar neurons and 
RGCs [87, 88]. Glutamate exerts its action through ionotropic 
[amino-methyl-propionic-acid (AMPA), N-methyl-d-
aspartate (NMDA) and kainate GluRs] and metabotropic 
receptors [89, 90]. It is also a potent neurotoxin involved in RGC 
death in hypoxic-ischemic conditions [91, 92] where increased 
accumulation of glutamate occurs in the extracellular spaces 
in the retinal tissue. Glutamate has been shown to affect the 
ganglion cell layer and also cause necrosis of cells in the inner 
retina [93]. Exposure of RGCs derived from newborn rats to 
glutamate resulted in induction of neurotoxicity [94]. Excess 
extracellular release of glutamate is known to kill neurons by 
excitotoxic mechanisms through activation the NMDA and 
AMPA receptors. Excitotoxicity has been suggested as a major 
mechanism underlying RGC death in many ocular pathologies 
including diabetic retinopathy, retinal and choroidal vessels 
occlusion and glaucoma [95-100]. Excitotoxic neuronal death 
involves calcium influx into the cells [101] that has been 
reported as an essential component of glutamate neurotoxicity 
[102]. Stimulation of glutamate receptors in chick RGCs 
in vitro caused calcium influx through NMDA receptor-
associated channels and subsequently their death. Increased 
calcium influx in the neurons causes mitochondrial dysfunction 
and nNOS generation resulting in neuronal cell death [103, 
104]. We have shown that expression of nNOS in the RGCs 
is enhanced in hypoxic injury and that hypoxic induction of 
nNOS is mediated by nuclear factor kappa B (NF-κB). The 
increased amount of NO released subsequently, by RGCs, 
results in their apoptosis through caspase-3 activation [105]. 
Activation of NF-κB was demonstrated in the RGCs and 
was implicated in their apoptosis in the adult retina following 
optic nerve transection [106] and in hypoxia [107]; apoptosis 
of RGCs was prevented by administration of inhibitors for 
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NF-κB, such as parthenolide and sulfasalazine [108].

Recent studies in the hypoxic neonatal retina have shown 
upregulation of expression of various subunits of the NMDA 
receptor i.e. NR1 and NR2A-D and NR3A localized in the 
RGCs [109] and increased calcium influx in the hypoxic 
RGCs along with their augmented apoptosis. Apart from 
NMDA receptors, involvement of AMPA GluRs in hypoxic–
ischemic cell death in the adult retina and neonatal retina has 
been reported [110]. AMPA receptors are composed of various 
combinations of four subunits (GluR 1-4), GluR1, GluR3 and 
GluR4 being calcium permeable, whereas the GluR2 subunit 
is calcium impermeable [111]. Accumulation of calcium 
in the mitochondria occurs with an increase in intracellular 
calcium and this calcium overload causes opening of the 
permeability transition pore resulting in massive swelling of 
the mitochondria and release of apoptotic mediators such as 
cytochrome c [101, 112, 113]. Mitochondrial failure results in 
energy depletion and free radical production [114].

Calcium influx through AMPA receptors and subsequent 
death of chick RGCs was shown to occur through stimulation 
of these receptors [115] and generation of free radicals 
such as superoxide through increased intracellular calcium 
has been reported. Activation of NOS leading to excess 
production of NO are also initiated by increased intracellular 
calcium and in ischemic conditions NO has been reported 
to produce peroxynitrite, which generates hydroxyl radical. 
The involvement of the NMDA and AMPA receptors in 
RGC death in hypoxic conditions is evidenced by significant 
attenuation in the intracellular calcium,  cytochrome c,  caspase-3 
and ROS in the hypoxic RGCs treated with NMDA receptor 
antagonist MK-801 [109] or AMPA receptor antagonist, 6, 
7-dinitroquinoxaline-2,3-dione as reported by us [110].

Hypoxia and oxidative stress
The generation of free radicals derived from oxygen 

[ROS] is balanced in health as any excess is eliminated by 
endogenous antioxidants such as superoxide dismutase, 
catalase, glutathione peroxidase, glutathione (GSH) and 
others. Oxidative stress occurs in pathological conditions when 
the balance between free radical formation and the ability of 
endogenous antioxidants to eliminate them is disturbed.  The 
disturbance in this balance damages the lipids, proteins, and 
DNA resulting in their oxidation and causing cell death by 
necrosis or apoptosis.  It is well documented that hypoxia 
induces oxidative stress that plays a pivotal role in damaging 
the neurons in the adult and developing neural tissues [116-
120]. ROS has been reported to be involved in signaling RGC 
death by acting as a second messenger and/or modulating 
protein function in conditions such as glaucoma [121-123] 
and ischemic injuries of the retina [107, 124]. Hypoxia and 
oxidative stress are also involved in the development of diabetic 
retinopathy [125] resulting in RGC death [126]. Increased 
lipid peroxidation (LPO) and depletion of antioxidants such 
as GSH in response to hypoxia/reoxygenation have been 
reported by us to cause damage to RGCs [43]. Oxidative stress 
induces structural, biochemical, and functional abnormalities 
of mitochondria such as mitochondrial permeability transition 
pore opening and leakage of cytochrome c from mitochondria 
into the cytosol in hypoxic conditions [109] contributing to 

cell injury or apoptosis and necrotic cell death [127-129].  Our 
studies on the neonatal retina have shown unequivocally that 
LPO was increased in the hypoxic retina while conversely, 
GSH levels were decreased along with increased apoptosis of 
RGCs thus underscoring the role of oxidative stress in RGC 
death [43].

Besides causing damage to the RGCs directly, oxidative 
stress has also been linked to the disruption of BRB in 
hypoxic-ischemic injuries and diabetic retinopathy [130]. 
ROS has been thought to contribute to the increased vascular 
permeability by causing TJ alterations through the enhanced 
production of inflammatory cytokines such as IL-1β and 
TNF-α and VEGF [130].

Hypoxia and purinergic receptors
The extracellular signalling by purine nucleotides and 

nucleosides, such as adenosine and adenosine tri phosphate 
(ATP) are now appreciated and the receptors through which 
they exert their action are called purinergic receptors. The 
purinergic receptors are further classified into three distinct 
classes P1 (A1, A2A, A2B and A3 for adenosine), P2X (P2X1-7, 
ligand gated ion channel receptors) and P2Y receptors (P2Y1-

14, G-protein coupled purinoceptors) [131]. Purines along with 
their metabolites are known to contribute to a large number 
of functions in the eye including daily maintenance of ocular 
tissue and their dysregulated stimulation could contribute to 
ocular/retinal diseases involving death of RGCs [132]. The 
RGCs are known to express both P1 and P2 receptors [132]. 
While the information on the role of these receptors in RGCs 
are emerging, studies have focused on the activation of P2X7 
receptor and associated RGC death. P2X7 receptors expressed 
on RGCs are essential for modulating their synaptic responses 
[133]. While a short term stimulation of P2X7 receptors 
induces physiological calcium response, prolonged stimulation 
is shown to mediate RGC death [134]. Under hypoxic/
ischemic conditions, activation of P2X receptors, specifically 
the P2X7 receptor, has been reported to cause death of RGCs 
[134, 135] by enhancing intracellular calcium levels. However, 
inhibition of P2X7 receptor prevented the death of RGCs 
following ischemic insult [135]. Taken together these studies 
provide compelling evidence for the involvement of P2X7 
in RGCs death. Conversely, adenosine, that is accumulated 
following hypoxia, has been shown to confer protection to the 
RGCs by acting via the A1 [136, 137] and A3 [138] receptors. 
Adenosine could also stimulate the A2A receptors expressed on 
retinal vascular cells and induce VEGF production through 
cAMP-dependent protein kinase A pathway [139]. Given 
the complex role of VEGF in mediating BRB disruption and 
protecting RGC, in hypoxic conditions, it would be justifiable 
to state that purinergic receptors are also involved in this 
process and modulating their response would be of therapeutic 
interest. 

Protective effect of melatonin in hypoxia
Melatonin, an indoleamine, is produced mainly by the 

pineal gland with some synthesis occurring in the retina also 
[140]. It is well established that melatonin has antioxidant 
properties [141] and has the ability to scavenge free radicals, 
induce expression of antioxidant enzymes and reduce lipid 
peroxidation to mitigate oxidative stress in neural tissues 
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[142]. Hypoxia induced increase in lipid peroxidation in the 
retina was diminished and the reduced content of glutathione 
was increased in hypoxic rats treated with melatonin [43]. In 
addition to mitigating the oxidative stress, melatonin treatment 
was effective in significantly suppressing the TNF-α and IL-
1β levels in the retina of hypoxic rats thus mitigating hypoxia-
induced inflammation. Suppression of the inflammatory 
response in ischemic conditions [143] and apoptosis in the 
developing hypoxic brain and retina [142, 43] by melatonin 
has been demonstrated. Very interestingly, melatonin was 
also effective in reducing the production of VEGF and 
NO and hypoxia-induced enhanced vascular permeability 
[9]. Reduced vascular permeability was evidenced by a 
reduction in extravasation of intraperitonially or intravenously 
administered RhIC and HRP into the retinas of hypoxic adult 
and neonatal rats [21, 9].

Mitochondrial damage is induced by hypoxia in a variety 
of cells in the retina including RGCs and Müller cells [109]. 
We have shown recently that hypoxia resulted in an increased 
release of cytochrome c into the cytosol of RGCs as a result 
of opening of mitochondrial transition pores which activates 
cytosolic caspases such as caspase-3 [109]. Cytochrome c 
release and subsequent activation of caspase-3, which leads 
to apoptosis, were reduced in the RGCs following melatonin 
administration in the hypoxic retinas [43] and the occurrence 
of apoptotic RGCs was significantly reduced. 

Conclusion
There is voluminous evidence that hypoxia is associated 

with many ocular pathologies and is a primary cause of 
death of RGCs. This may be mediated by different factors 
such as a disrupted BRB, excitotoxicity through increased 
extracellular glutamate levels and activation of NMDA and 
AMPA receptors, increased inflammation and oxidative stress  
(Figure 1). Therefore, mitigating RGC death would 
require therapies targeting the suppression of these factors. 
 We have shown that melatonin treatment of hypoxic 
animals has promising results in protecting the RGCs 
through suppression of inflammation, oxidative stress and 

excitotoxic mediators as well as preserving the BRB. In view 
of its beneficial effects, we propose that melatonin could be 
considered as a potential therapeutic agent for the treatment 
of retinal pathologies in children and adults, in addition to 
other drugs/molecules of therapeutic interest. Future research 
on other beneficial properties of melatonin to identify its full 
neuroprotective potential in addition to its effectiveness in 
amelioration of oxidative stress and inflammation is certainly 
warranted. 
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