

18F-AV133 Cerebral VMAT2 Binding Correlated with α-synuclein Spliced Variants in Parkinson’s Disease

Rui Gao1,2, Guangjian Zhang1, Xueqi Chen1,4, Savina Reid2 and Yun Zhou2*

1Department of Nuclear Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
2The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
3Department of Surgery, the First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
4Department of Nuclear Medicine, Peking University First Hospital, Beijing, China

Correspondence to:
Yun Zhou, PhD
The Russell H. Morgan Department of Radiology and Radiological Science
Johns Hopkins University School of Medicine
601 N. Caroline Street, JHOC room 3241
Baltimore, MD 21287-0807, USA
Fax: +1 410 955 0696
E-mail: yunzhou@jhmi.edu

Received: October 29, 2015
Accepted: January 08, 2016
Published: January 12, 2016

Copyright: © 2016 Gao et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY) (http://creativecommons.org/licenses/by/4.0/) which permits commercial use, including reproduction, adaptation, and distribution of the article provided the original author and source are credited.

Abstract

The study was designed to evaluate the connections between genotyping and functional image-based phenotyping in Parkinson’s disease (PD). The associations between 18F-AV133 cerebral vesicular monoamine transporter 2 (VMAT2) binding and α-synuclein gene (SNCA) spliced variants were studied within the Parkinson’s Progression Markers Initiative study (PPMI) project. 18F-AV133 PET, structural magnetic resonance imaging (MRI), clinical assessments, and α-synuclein isoform data for 22 PD patients and 4 controls were collected from the PPMI project. Eight out of the 22 PD patients undertaken 18F-AV133 PET were presented with SNCA transcript measurements. The 18F-AV133 cerebral standardized uptake value ratio (SUVR) relative to the occipital cortex was calculated as an index of VMAT2 density. The differential expression of 5 SNCA transcript variants (the transcript with boundaries (E3E4), lack exon 5 (E4E6), specifically with a long 3'UTR region (3UTR1 and 3UTR2), and only comprises exons 1-4 (007)) was ascertained by the use of isoform-specific primers and a high-precision Nano String gene expression assay. Region of interest (ROI)- and voxel-wise-based statistical analysis were performed using statistical parametric mapping software (SPM8). In contrast to controls, the highest reduction of 18F-AV133 SUVRs was found in left (contralateral to the predominantly affected side at onset) posterior putamen (54.1%), followed by right posterior putamen (43.2%), left anterior putamen (35.6%), right anterior putamen (27.9%), caudate (22.7%) (p < 0.01). The predominantly affected side at onset was right for seven of the eight PD patients. There were significant correlations between ROI SUVRs and SNCA transcript variants: left anterior putamen with SNCA-007 (Pearson r = 0.85, p < 0.01); left anterior putamen with SNCA-E4E6 (r = 0.77, p = 0.03); left caudate with SNCA-E3E4 (r = 0.72, p = 0.04); and left ventral striatum with SNCA-E3E4 (r = 0.85, p < 0.01). Voxel-wise analysis showed that the left sub-lobar and anterior putamen were correlated with SNCA-007, and the left subcallosal gyrus and ventral striatum were significantly correlated with SNCA-E3E4 (p < 0.001). The initial results demonstrated a connection between SNCA splice variants in blood and monoaminergic degenerations in PD measured by 18F-AV133 PET.

Keywords

PET, 18F-AV133, Vesicular monoamine transporter 2, Alpha-synuclein isoform, Parkinson’s disease

Introduction

Vesicular monoamine transporter 2 (VMAT2) is the protein responsible...
for transporting both dopamine and serotonin into synaptic vesicles [1]. 11C-dihydrotetrabenazine (11C-DTDBZ) PET has been used for in vivo imaging of cerebral VMAT2, and has proven to be a potential quantitative biomarker for monitoring dopaminergic degeneration in PD [2, 3]. One major limitation of the tracer is its short physical half-life (20 min) for wide use. 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-DTBZ, or 18F-AV133 hereafter), a recently developed positron emission tomography (PET) tracer for VMAT2 imaging with a half-life of 110 minutes, has shown to be a promising tracer for clinical use for detecting and monitoring the VMAT2 reduction in PD patients [5].

18F-AV133 PET, MRI acquisition, and image processing

Alpha-synuclein, which plays a key role in the development of Lewy body diseases, has been intensely studied over the past decade [7, 8]. Complex splicing events within the \(\alpha \)-synuclein gene (SNCA) caused isoforms are known to modify \(\alpha \)-synuclein aggregation propensities [9, 10]. The physical, biochemical, and biological properties of alternative SNCA isoforms, therefore, are strongly associated with the pathogenesis of Lewy body diseases [11]. Accumulating evidence suggests that \(\alpha \)-synuclein isoforms with different aggregation properties are strongly associated with the progression of PD [11, 12].

Several sensitive, specific and readily available \(\alpha \)-synuclein splice variant specific biomarkers for PD were reported [13]. Here, the Parkinson's Progression Markers Initiative study (PPMI) project recruited five related forms of the protein, the transcript with boundaries exon 3 and exon 4 (E3E4), lack exon 5 (E4E6), specifically with a long 3'UTR region (3UTR1 and 3UTR2), and only comprises exons 1–4 (007) to evaluate their potency as biomarkers for PD development (http://www.ppmi-info.org/data). With the aim of depicting the role of these SNCA transcripts in the monoaminergic neuron degeneration in PD, we studied correlations between SNCA transcript levels and cerebral VMAT2 densities measured by 18F-AV133 PET [4-6].

Materials and Methods

18F-AV133 PET, MRI acquisition, and image processing

Available 18F-AV133 PET scans for 22 PD patients and four normal controls, and structural magnetic resonance imaging (MRI) for each subject in the PPMI project was collected in the study by December 2014. Ten-min (2 × 5min) 18F-AV133 images acquired at 80.8 (± 2.8 SD) min post tracer injection were used for analysis. The dose of AV-133 used was 222.37 ± 17.02 MBq. Details of the data base have previously been reported [14], and up-to-date information on the study can be obtained from the project webpage (http://www.ppmi-info.org/data).

All PET and MRI images were processed using Statistical Parametric Mapping software (SPM8, Wellcome Department of Imaging Neuroscience, London, United Kingdom) and MATLAB (The MathWorks Inc.). To minimize motion effects during PET scan, the 18F-AV133 images with two frames were first aligned to generate mean images. All the aligned 10-min 18F-AV133 PET mean images were then co registered to MRI images. The MRI images were normalized to standard Montreal Neurologic Institute (MNI) space using SPM8 [15] with a high resolution MRI template provided by VBMS toolbox [16]. The transformation parameters determined by MRI spatial normalization were then applied to the co registered PET images for PET spatial normalization. A total of 34 regions of interest (ROIs) including the cortex, striatum, and sub–striatal regions were manually drawn on the MRI template using PMOD software (PMOD Technologies Ltd., Zürich, Switzerland) in standard MNI space. The sub–striatal regions used in the study were the ventral striatum, caudate, anterior putamen (pre-commissural dorsal putamen), and posterior putamen (post–commissural putamen) [17, 18]. The occipital cortex was used as reference tissue to calculate the standardized uptake value ratio (SUVR) of 18F-AV133 binding (http://www.ppmi-info.org/: AV-133 PET Image Processing Methods for Calculation of Striatal Binding Ratio), where the SUVR is a quantitative measurement of VMAT2 density in brain tissues. SUVR images were calculated as PET (images)/PET (occipital) in the standard space (image volume: 121 × 145 × 121, voxel size: 1.5 × 1.5 × 1.5 mm in x, y, z). ROI SUVRs were then obtained by applying ROIs to SUVR images. A 3D spatial Gaussian filter of 8 mm full width at half maximum in x, y, z direction was applied to SUVR images for voxel-wise statistical analysis using SPM8.

SNCA transcript analysis

Eight out of the 22 PD patients who underwent 18F-AV133 PET scanning also presented SNCA transcript measurements. The 8 PDs were comprehensively assessed for clinical characteristics, imaging manifestations, and blood indicators as described in the PPMI biology manual (http://www.ppmi-info.org/).

The biospecimens processing was performed in a standardized manner. Venous blood was collected briefly from each subject in PAX gene (Qiagen, Valencia CA) tubes, incubated at room temperature for 24 hours, and frozen and shipped on dry ice to Coriell. RNA was extracted following the PAX gene procedure. RNA quality was determined by using the RNA Integrity Number package. Only RNAs meeting three stringent Q/C parameters will be included in the analysis. Probes for the target and control RNAs were multiplexed and assayed according to the manufacturer’s protocol on the n Counter Digital Analyzer. Five SNCA probes were used to target the boundaries of exon 3 and exon 4 (E3E4-SNCA), transcripts specifically with a long 3′UTR region (3UTR1 and 3UTR2), and only comprises exons 1–4 (007) to evaluate their potency as biomarkers for PD development (http://www.ppmi-info.org/data).

All PET and MRI images were processed using Statistical Parametric Mapping software (SPM8, Wellcome Department of Imaging Neuroscience, London, United Kingdom) and MATLAB (The MathWorks Inc.). To minimize motion effects during PET scan, the 18F-AV133 images with two frames were first aligned to generate mean images. All the aligned 10-min 18F-AV133 PET mean images were then co registered to MRI images. The MRI images were normalized to standard Montreal Neurologic Institute (MNI) space using SPM8 [15] with a high resolution MRI template provided by VBMS toolbox [16]. The transformation parameters determined by MRI spatial normalization were then applied to the co registered PET images for PET spatial normalization. A total of 34 regions of interest (ROIs) including the cortex, striatum, and sub–striatal regions were manually drawn on the MRI template using PMOD software (PMOD Technologies Ltd., Zürich, Switzerland) in standard MNI space. The sub–striatal regions used in the study were the ventral striatum, caudate, anterior putamen (pre-commissural dorsal putamen), and posterior putamen (post–commissural putamen) [17, 18]. The occipital cortex was used as reference tissue to calculate the standardized uptake value ratio (SUVR) of 18F-AV133 binding (http://www.ppmi-info.org/: AV-133 PET Image Processing Methods for Calculation of Striatal Binding Ratio), where the SUVR is a quantitative measurement of VMAT2 density in brain tissues. SUVR images were calculated as PET (images)/PET (occipital) in the standard space (image volume: 121 × 145 × 121, voxel size: 1.5 × 1.5 × 1.5 mm in x, y, z). ROI SUVRs were then obtained by applying ROIs to SUVR images. A 3D spatial Gaussian filter of 8 mm full width at half maximum in x, y, z direction was applied to SUVR images for voxel-wise statistical analysis using SPM8.
from Human Universal Reference RNA were spotted at the beginning, end, and throughout the entire experiment.

Statistical analysis

ROI-based analyses were performed with Statistical Package for the Social Sciences (SPSS) statistics (version 21; SPSS, Inc., Chicago, IL). Comparisons of ROI SUVs between Parkinson's disease and healthy controls were tested with independent t tests. Based on the unified Parkinson disease rating scale (UPDRS) Part III (Motor scale) [19], PD patients were sub-grouped into severely disabled (SD-PD, Motor Scale > 32) and mild-to-moderately disabled (MD-PD, Motor Scale ≤ 32).

The relationships between the SNCA splice variants and ROI SUVs were explored by Pearson's correlations. ROI-based analysis is a hypothesis driven approach with PET measurement of high signal to noise ratio, but limited to predefined ROIs. Complementary to ROI-based analysis, voxel-wise statistical analysis was performed using SPM8 in the study. Statistical parametric maps were obtained for each voxel-wise statistical analysis was performed using SPM8 in the study. Statistical parametric maps were obtained for each voxel. The study showed that SUVR values were significant with a sample size comparable to the ones reported in the literature.

The simple statistics of ROI SUVs of 18F-AV133 binding in PD patients were illustrated in Figure 1. There were remarkable reduced SUVs in the PD group (n = 22) in striatal sub-regions as compared to healthy controls (n = 4). The highest reduction of 18F-AV133 SUVs was found in left posterior putamen (54.1%); followed by right posterior putamen (43.2%), left anterior putamen (35.6%), right anterior putamen (27.9%), and putamen (22.7%) (p < 0.01), and non-significant reductions in substantia nigra (12.4%, p = 0.09) and ventral striatum (7.1%, p = 0.42). Although there were no significant differences in SUVs between the MD-PD group (n = 17) and the SD-PD group (n = 5), a trend of reduced SUV was found in the right anterior putamen, caudate, ventral striatum, and substantia nigra (p, 0.10 - 0.40), and an increased MoCA score in SD-PD (25.20 ± 2.14 vs. 26.12 ± 3.18, p = 0.57). It is expected that these differences between the MD-PD and SD-PD group will attain statistical significance with a sample size comparable to the ones reported in the literature.

Results

Demographics, statistics of clinical assessments, 18F-AV133 ROI SUVs and SNCA transcripts

Demographics and simple statistics of 22 PD patients and 4 controls that had 18F-AV133 PET scans were summarized in Table 1. The mean age of these patients was 64.51 years, which was not significantly different from the mean age (63.37 years) of health controls (p > 0.5). The disease duration was comparable between MD-PD (17.89 ± 4.85 months, n = 17) and SD-PD group (19.36 ± 6.38, n = 5). There was also no statistical difference in MoCA between PD patients and the control group. Among these 22 patients with PET data, the statistics for the 8 PD patients who had SNCA transcript values were listed in Table 2. The age, MoCA score, Motor scales, and ROI SUVs of the 8 patients were not significantly different from those in the MD-PD or whole PD group.

Table 1: Demographics and clinical assessments of subjects with 18F-AV133 PET.

<table>
<thead>
<tr>
<th>PD (n = 22)</th>
<th>HC (n = 4)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.18 ± 11.02</td>
<td>66.60 ± 6.89</td>
</tr>
<tr>
<td>Gender (male: female)</td>
<td>14:3</td>
<td>4:1</td>
</tr>
<tr>
<td>Disease duration (months)</td>
<td>17.89 ± 4.85</td>
<td>19.36 ± 6.38</td>
</tr>
<tr>
<td>UPDRS total score</td>
<td>29.0 ± 8.99</td>
<td>51.2 ± 4.66</td>
</tr>
<tr>
<td>Hoehn and Yahr stage</td>
<td>1.42 ± 0.49</td>
<td>2.0</td>
</tr>
<tr>
<td>MoCA score</td>
<td>26.12 ± 3.18</td>
<td>25.2 ± 2.14</td>
</tr>
<tr>
<td>Side predominantly affected at onset (R: L)</td>
<td>10.7</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD; HC, elderly health control; PD, Parkinson’s disease; MD-PD, mild to moderate disabled PD; SD-PD, severely disabled PD; UPDRS, unified Parkinson disease rating scale; MoCA, Montreal cognitive assessment; R, Right; L, Left; Mi, Mixed; P, Positive; N, Negative; SNCA, α-synuclein gene; SNCA-3UTR, the transcript with boundaries exon 3 and exon 4; SNCA-1, the transcript lacking exon 5; SNCA-3UTR-1 and 2, the transcript specifically with a long 3’UTR region; SNCA-007, the transcript only comprises exons 1–4.

The simple statistics of ROI SUVs of 18F-AV133 binding in PD patients were illustrated in Figure 1. There were remarkable reduced SUVs in the PD group (n = 22) in striatal sub-regions as compared to healthy controls (n = 4). The highest reduction of 18F-AV133 SUVs was found in left posterior putamen (54.1%); followed by right posterior putamen (43.2%), left anterior putamen (35.6%), right anterior putamen (27.9%), and putamen (22.7%) (p < 0.01), and non-significant reductions in substantia nigra (12.4%, p = 0.09) and ventral striatum (7.1%, p = 0.42). Although there were no significant differences in SUVs between the MD-PD group (n = 17) and the SD-PD group (n = 5), a trend of reduced SUV was found in the right anterior putamen, caudate, ventral striatum, and substantia nigra (p, 0.10 - 0.40), and an increased MoCA score in SD-PD (25.20 ± 2.14 vs. 26.12 ± 3.18, p = 0.57). It is expected that these differences between the MD-PD and SD-PD group will attain statistical significance with a sample size comparable to the ones reported in the literature.
Correlations between SNCA transcripts counts and cerebral \(^{18}\)F-AV133 SUVRs in Parkinson's disease

The short SNCA-007 transcript and SNCA-E4E6 transcript had significant positive correlations with and the left anterior putamen SUVRs (Pearson \(r = 0.85, p < 0.01\); and \(r = 0.77, p = 0.03\)). The SNCA-E3E4 was positively correlated with SUVRs of the left caudate and ventral striatum (Pearson \(r = 0.72, p = 0.04\); and \(r = 0.85, p < 0.01\), Figure 2). A representative SUVR image from a typical PD patient with higher SNCA-007/E4E6/-E3E4 levels had higher SUVRs in the striatum and better UPDRS motor scale/MoCA score as compared to a patient of low SNCA-007/-E4E6/-E3E4 counts (Figure 3). Note there were no significant correlations between the transcripts SNCA-3’UTR-1 and SNCA-3’UTR-2 counts and ROI \(^{18}\)F-AV133 SUVRs.

Results from voxel-wise statistical analysis showed that a single large cluster of 653 voxels (peak \(T = 9.92\) at -33 mm, 12 mm, -8 mm in x, y, z), mainly involving the left sub-lobar and left anterior putamen, was positively correlated with SNCA-007 counts (Figure 4A). SPM8 analysis also detected positive correlations between SNCA-E3E4 counts and a cluster of 194 voxels (peak \(T = 8.12\) at -6 mm, -17 mm, -14 mm in x, y, z), mainly including voxels located in the left subcallosal gyrus and ventral striatum (Figure 4B).

Discussion

It has been reported that PARK proteins are associated with familial forms of Parkinson's disease over the past decade. The mutations in genes clustered in the PARK loci, including PARK1 (α-synuclein, SNCA), PARK2 (parkin), PARK5 (UCH-L1), PARK6 (PINK1), PARK7 (DJ-1), PARK8 (LRRK2) and PARK9 (ATP13A2), are linked to the disease [21]. The aggregations of α-synuclein are considered one of the central factors in the pathophysiology of PD [8,11]. In addition to a number of post-translational modifications, including phosphorylation, nitration, cleavage, and ubiquitination [22], four α-synuclein spliced mRNA transcripts have been reported till now: SNCA140 (the full-length isoform), SNCA126 (lack exon 3), SNCA112 (lack exon 5), and SNCA98 (lack exon 3 and 5) [10-12]. Specific RNA transcript isoforms with an extended 3’ untranslated region were also reported to be linked to pathological processes [23]. Besides the above mentioned splice variants, the PPMI recruited five related forms of the SNCA transcripts to evaluate their potency as biomarkers for PD development (http://www.ppmi-info.org/data). As the monoaminergic terminal reductions evaluated by \(^{18}\)F-AV-133 image has been taken as an objective marker for PD development [2-6], the current study evaluated the association between SNCA splice variant biomarkers and cerebral \(^{18}\)F-AV-133 SUVRs in PD. ROI-based and voxel-wise analysis showed there were significant positive correlations between \(^{18}\)F-AV133 SUVRs of the ventral striatum, caudate, and anterior putamen/sub-lobar, and α-synuclein transcript levels of SNCA-007 and SNCA-E3E4 (Figure 2 and 4). These strong correlations suggest a possibility of using these SNCA transcripts as biomarkers for monoaminergic neuron degenerations in PD. A report from Zaltieri et al and Wang et al provides support to our findings. Their study proved the involvement of α-synuclein in synaptic transmission in knock-out mice and suggested that α-synuclein may regulate the size of presynaptic vesicular pools [24, 25]. Consequently, it can be suggested that these α-synuclein isoforms play a role in neurotransmission or in the organization and regulation of presynaptic VMAT2 vesicles.
In line with previous reports indicating presynaptic α-synuclein aggregation is involved in synaptic function [25], the current study showed a significant positive correlation between α-synuclein transcripts and cerebral 18F-AV133 SUVRs. While the biological and pathological significance of the different α-synuclein splicing variants remains unknown, these isoforms have been associated with intracellular aggregations [26-29]. Though accelerated fibrillogenesis and enhanced aggregation was expected with the deletion of the functional domains [10, 29], the alternative isoforms actually aggregate less than the canonical isoform SNCA140 [12]. The interruption of the domain responsible for protein–membrane interaction at the protein N-terminus even makes SNCA 126 an aggregation-preventing isoform [28]. In this way, we surmise that transcripts SNCA-007 and SNCA-E3E4, which correlated positively with the monoaminergic neuron function, were neuron protective isoforms. Further studies are needed to clarify the mechanism underlie our findings.

Our study found a significant correlation between α-synuclein transcripts and monoaminergic neuronal function in the anterior putamen, caudate, and ventral striatum in PD patients. These brain regions are known for their crucial role in regulating dopaminergic activity associated with cognitive function in PD [30-32]. Accumulating evidence suggests that dopamine depletion spreading to the ventral striatum disrupts corticostriatal communication, and the relationship between striatal and cortex dopamine should be considered as important contributors to cognitive decline [32, 33]. As α-synuclein has long been suggested to be involved in cognitive decline of Alzheimer’s disease (AD) and PD [34, 35], our results shed some light on the way to explain the role of α-synuclein in cognitive decline in PD.

Since VMAT2 is a neuro transporter not only for dopamine, but also for serotonin, norepinephrine, histamine, and GABA. The reductions in VMAT2 PET measurements could reflect the brain dysfunction in PD patients. A recent study reported that there were correlations between cognitive status and striatal 18F-AV133 binding in Dementia with Lewy Bodies (DLB) [36]. Although we did not find any close correlations between regional SUVRs of 18F-AV133 and cognitive assessments in our PD patients (including HVLT-R, BJLO, LNS, SDMT, semantic fluency, and the phonemic fluency test, n = 22), a convergent decline of striatal VMAT2 density and MoCA scores was found in severely disabled patients. Not all patients with Parkinson’s disease in our study had measurable cognitive impairment (mean MoCA score 25.5). Thus, it is possible that more pronounced changes and stronger associations with cognition might be detected in a large PD population with established cognitive deficit in the ongoing project.

In conclusion, this pilot study provided the first evidence of a strong linear correlation between SNCA splice variant markers and cerebral VMAT2 densities measured by 18F-AV133 SUVRs in PD. The results indicate that α-synuclein splicing may represent an important regulatory and/or functional role during PD development. Considering the high heterogeneity in PD development, we realized one main limitation of the study is that the SNCA expression and VMAT2 correlation study was based on only eight patients. This reduced sample size could explain the lack of consistence between ROI-based results and results from voxel-wise analysis. As the PPMI is ongoing project, we will continue to study the associations between SNCA spliced variants and cerebral VMAT2 densities with larger population.

Acknowledgements

Data used in the preparation of this article were obtained from the PPMI database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Avid Radiopharmaceuticals, Biogen Idec, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso Scale Discovery, Pfizer Inc., Piramal Imaging, Roche, Servier, and UCB.

References

18 F-AV133 Cerebral VMAT2 Binding Correlated with α-synuclein Spliced Variants in Parkinson’s Disease

Gao et al.

